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*Université Paris-Dauphine and *,†INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, Le Chesnay Cedex, France

Received October 16, 1996

a global Navier–Stokes model. At first, the coupling was
achieved by imposing friction boundary conditions on theWe introduce an adaptative coupling of the Boltzmann and Na-

vier–Stokes equations to compute hypersonic flows around a vehi- obstacle [4]. This coupling requires that the Boltzmann
cle at high altitude. The coupling is achieved by matching half fluxes and the Navier–Stokes domains include the obstacle as
at the interface of the Boltzmann and Navier–Stokes domains. The

boundary, and the Navier–Stokes domain overlaps com-domains are determined automatically by computing local kinetic
pletely the Boltzmann domain. This strategy works well forresiduals on a preliminary Navier–Stokes solution. Our method is

developed here for monoatomic gases. Different numerical results very low Knudsen numbers but is always rather expensive.
illustrate its validity and limits. Q 1997 Academic Press Moreover, rarefied effects are miscalculated by the

Navier–Stokes solver when the Knudsen number in-
creases.

1. INTRODUCTION In another direction, nonoverlapping coupling strategies
have been proposed in [5, 18, 19], for handling more rar-During the reentry phase, a spatial vehicle gets across
efied situations.different fluid regimes, characterized by the so-called

As an alternative, we propose here an adaptative halfKnudsen number. This dimensionless number is the ratio
fluxes coupling. Our strategy answers two questions: howof the mean free path (the mean distance travelled by a
to couple the Boltzmann and the Navier–Stokes models,particle between two successive collisions) by a characteris-
and where to do it. The coupling is achieved by matchingtic length of the flow. At altitude of 90 km and up, the
half fluxes at the interface of the Navier–Stokes and Boltz-Knudsen number is large, corresponding to a rarefied re-
mann domains. This condition results from a kinetic inter-gime. In this case the flow is computed by a kinetic model.
pretation of the Navier–Stokes equations. To determineAt altitude below 70 km the Knudsen number is sufficiently
the Navier–Stokes domain, and consequently the Boltz-small for the flow to be well described by the Navier–
mann domain, we introduce a criterion based on the analy-Stokes model. For intermediate altitude the Navier–Stokes
sis of kinetic validity of the numerical Navier–Stokes solu-equations cease to be valid; it is the transitional regime.
tion. Then we propose a global coupling algorithm,At this level, slip effects can be observed in the boundary
including an automatic definition of the domains and thelayer, and the gas gets rarefied in the wake. These modifi-
time marching algorithm of [4]. Thanks to the half fluxescations of the flow can be observed by kinetic calculations.
compatibility condition we can consider in the simulationsUnfortunately, realistic kinetic simulations become rapidly
Boltzmann and Navier–Stokes domains which do nottoo expensive, and often impossible, as the Knudsen num-
overlap.ber becomes smaller, because they require one computa-

In the present paper, we briefly review the transitiontional cell per mean free path.
from the Boltzmann equation to the Navier–Stokes equa-Different solutions have been proposed to compute such

flows. The most standard uses analytical slip boundary tions (Section 2) from which we derive formally the cou-
conditions as described in [6, 28, 14]. Some difficulties pling strategy (Section 3). In Section 4, we describe the
arising from this method have led many authors to use time marching algorithm, its implementation, and the Na-
intermediate asymptotic models such as the Burnett equa- vier–Stokes and the Boltzmann solvers used in our simula-
tion [29] and the Levermore model [17]. tions. In Section 5 we show first numerical results showing

A different strategy has appeared in the last years. It the limits of validity of the compatibility condition. In
consists in solving locally the kinetic model coupled with Section 6 we present the Grad criterion to determine the

validity of the Navier–Stokes solution, which leads to the
adaptative definition of the computational domains. We1 E-mail: Patrick.LeTallec@inria.fr.
also proposed a global algorithm. Numerical results,2 E-mail: mallinger@inria.fr.

3 Supported by Hermes European Research Project and CEA-CESTA. which make use of the global algorithm, are presented in
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Section 7. Finally we end this paper by concluding where fo is the Maxwellian equilibrium distribution func-
tion and c is an unknown function. Introducing f in (1), itremarks.
follows that c is the solution of

2. BOLTZMANN EQUATION. KINETIC
INTERPRETATION OF THE

c 5 L21 S­fo

­t
1 j ?

­fo

­x
1 O(«)D, (4)NAVIER–STOKES EQUATIONS

Let f be the density of the gas particles at position x, with where L(c) 5 Q( fo , foc) 1 Q( foc, fo) is the linearized
velocity j, at time t. In adimensional form, the Boltzmann Boltzmann operator. The conservation laws are obtained
equation of rarefied gas dynamics characterizes this density replacing f by (3) in (1), multiplying by the collision vector
as the solution of the integro-differential equation [6, 7, K 5 (1, j, uj u2/2), and integrating over the velocity domain
9, 28],

R3, yielding

­f
­t

1 j ?
­f
­x

5
1
«

Q( f, f ). (1) ­

­t SE fK djD1
­

­x
? SE jfK djD5 0,

The collision operator Q counts the particles which are
which writesgained or lost through intermolecular collisions. For mono-

atomic gases, a phenomenological analysis leads to the
following definition
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) and (j9, j

*
9 ) the pre- and postcolli-

sion particle velocities. The vector vr 5 j 2 j
*

is the relative
velocity of the pair of particles and g [ S 2 a vector of the 3
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retot
45 E

R3 1
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j
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2 f dj,unit sphere.

The collision cross section B measures the collision prob-
ability of particles with velocities j and j

*
, and collision

angle g. If the collision is effective the postcollision veloci- t 5 2 E fo«cc ^ c dc, (6)
ties are deduced from the conservation of both momentum
and kinetic energy, yielding q 5 Efo«ccucu2 dc. (7)

j9 5 j 1 (vr ? g)g,
Here c 5 j 2 u, etot 5 uuu2/2 1 eint is the macroscopic total

j9
*

5 j
*

2 (vr ? g)g. energy, and eint the macroscopic internal energy.
The last step consists in calculating an approximation

The Knudsen number « in (1) appears as a ratio between solution of c, in order to relate the viscous-stress tensor t
the characteristic times used to adimension the collision and the heat flux vector q to the lower macroscopic mo-
and advection terms, respectively. ments. At first order we obtain [6, 28],

The crucial point of our method is to use a kinetic inter-
pretation of the Navier–Stokes equations. For this purpose

c 5
ao

ÏRT
S ucu2

2RT
2

5
2D c ?

­T
­x

1
bo

RT Sc ^ c 2
1
3

ucu2ID :
­u
­x

,we introduce an asymptotic model, approximating the
Boltzmann equation, and degenerating to the Navier–

(8)Stokes model when the gas gets dense. This is achieved
by the Chapman–Enskog theory, which writes f as a first-

where ao and bo are two constants. Replacing (8) in (6)order expansion in «,
and (7) we deduce the Navier–Stokes approximation of t
and q

f 5 fo(1 1 «c),
(3)

fo 5
r

(2fRT)3/2 exp S2
uj 2 uu2

2RT D, t 5 e FS­u
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­xD2
2
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div uIG, (9)
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q 5 2k
­T
­x

, (10)

where e 5 2rRT«bo and k 5 2Gs(ao«/ÏRT)r(RT)2. The
quantities ao and bo depend on the intermolecular potential
of the collision (see [3, 28]).

Altogether, the Chapman–Enskog expansion produces
the conservations form (5) of the Navier–Stokes equations,
identifies the constitutive laws for t and q, and gives in (8)

FIG. 1. Boltzmann splitted domain.
an approximation of the underlying kinetic distribution,
which is

fCE 5 fo F1 1
2
5

q ? c
r(RT)2 S ucu2

2RT
2

5
2D2
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t : c ^ c
r(RT)2G. (11) ­f2
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­f2

­x
5

1
«

Q( f2 , f2) in V2 3 R3 3 (0, T),

f2 5 f1 on G1 3 [0, T],

(14)

Thus, rewriting the Navier–Stokes equations using the
usual abstract conservative form

where
­U
­t

1
­F(U)

­x
5 0,

G1 5 h(x, j) [ G 3 R3/j ? n(x) . 0j,
G2 5 h(x, j) [ G 3 R3/j ? n(x) , 0j.

we observe that the associated fluxes have the kinetic form

The vector n(x) denotes the normal vector to G at theF(U) 5 E jK fCE dj. (12)
point x, oriented from V1 to V2 , as shown in Fig. 1. The
matching conditions of (13) and (14) express that the distri-This kinetic form can also be obtained through different
bution of particles coming in the subdomain V1 (resp. V2)asymptotic expansions, such as in Grad [13] or Lev-
is equal to the distribution of particles going out of theermore [17].
subdomain V2 (resp. V1).

The coupled problem (13), (14) can be solved by the3. BOLTZMANN NAVIER–STOKES COUPLING:
following iterative procedure, which is proved to convergeFORMAL DERIVATION
for pure hyperbolic problems [11],

We introduce first a formal Boltzmann–Boltzmann cou-
• Guess f2(x, j, t) on incoming characteristics (i.e., n(x) ?pling by extending classical domain decomposition strate-

j , 0);gies [11, 8, 16] to the Boltzmann equation. Consider the
• Solve the resulting subproblem in V1;Boltzmann equation (1) in the global domain V 3 R3 3

[0, T], where the spatial domain V is an open bounded set • With the resulting value f1(x, j, t), imposed on incom-
in R3, the velocity domain is R3, and the time interval is ing characteristics (i.e., n(x) ? j . 0), solve the subproblem
[0, T] with T . 0. We impose classical conditions on the on V2;
boundary of V 3 R3 3 [0, T]. To get the coupled problem

• Use the result to update f2(x, j, t) on the interface andwe first split the spatial domain into two nonoverlapping
re-iterate.subdomains V1 and V2 , as in Fig. 1, such that

At the present time we can prove the equivalence
V 5 V1 < V2 , V1 > V2 5 B, V1 > V2 5 G. between the global and the coupled problems, when

replacing the Boltzmann model by the BGK model. We
think that the demonstration of convergence of theThe surface G is the interface between the domains V1 and
algorithm, in this BGK case, is not an insurmountableV2 . If fi is the restriction of f in Vi 3 R3 3 [0, T], the global
problem. We will present our results in a followingproblem is formally equivalent to the coupled problem
paper.

In any case, it is easy to extend the above strategy to
the Boltzmann–Navier–Stokes coupled problem. For this

­f1

­t
1 j ?

­f1

­x
5

1
«

Q( f1 , f1) in V1 3 R3 3 (0, T),

f1 5 f2 on G2 3 [0, T],

(13) purpose we replace in the subdomain V1 , the distribution
f1 by its Navier–Stokes approximation fNS , for example
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The Boltzmann domain VB contains the body. The Na-
vier–Stokes domain VNS may overlap the Boltzmann do-
main (Gint [ VB), or not (Gint 5 GB).

The coupled problem now consists in solving the follow-
ing equations:

On VB we solve the Boltzmann equation

­f
­t

1 j ?
­f
­x

5
1
«

Q( f, f ), (20)

with boundary conditions

f(j)/GB
5rMu,T(j) ifj ? n,0,

FIG. 2. Boltzmann Navier–Stokes split domain.

f(j)/GW
5kMuW ,TW

(j) ifj ? n,0(perfectaccommodation),

the Chapman–Enskog one. Thus the interface boundary
conditions of (13) and (14) are transformed into where n denotes the outward normal vector to the bound-

ary of VB .
f2(x, j, t) 5 fNS(x, j, t) on G1 3 [0, T], (15)

On VNS we solve the Navier–Stokes equations
fNS(x, j, t) 5 f2(x, j, t) on G2 3 [0, T]. (16)

­U
­t

1
­

­x
? F(U) 5 0,Condition (15) is imposed as the boundary condition in

the Boltzmann model (14), on V2 . On V1 , we reduce our
kinetic equations (13) and (16) to the Navier–Stokes equa-

with boundary conditionstion by multiplication by the collision vector K and integra-
tion in velocity. We therefore have to solve the differential

U 5 Uy at infinity,equation (5) on V1 , with constitutive laws (9), (10) and
boundary conditions

F(U)2 ? n 5 E
j ? n

Kj ? nf(x, j, t) dj on Gint .

F(U) ? n/G 5 F(U)1 ? n 1 F(U)2 ? n, (17)

There is a clear coupling between the above Boltzmannwhere the outgoing and ingoing fluxes are respectively
and the Navier–Stokes models. The coupling from Boltz-given by
mann to Navier–Stokes is achieved by imposing the incom-
ing half fluxes F 2(U) ? n, predicted and computed by the

F(U)1 ? n 5 E
j ? n.0

Kj ? nfNS(x, j, t) dj, (18) Boltzmann solver. The outgoing fluxes F1(U) ? n are com-
puted by the Navier–Stokes solver. Conversely the Na-

F(U)2 ? n 5 E
j ? n,0

Kj ? nf2(x, j, t) dj. (19) vier–Stokes model acts on the Boltzmann model by impos-
ing the incoming velocity distribution rMu,T on the

After some calculation F(U)1 ? n can be expressed only in interface GB . The parameters r, u, and T of this distribution
terms of the moments r, u, T, and their gradients. For the are predicted locally by the Navier–Stokes model. The
coupled problem, the compatibility conditions are finally reader can object that this Maxwellian distribution is only
given by (15) for the Boltzmann model and by (17)–(19) for valid in regions of translational equilibrium, where the
the Navier–Stokes model. We usually call these conditions effects of viscosity and thermal conductivity are insignifi-
‘‘half flux conditions’’ and the resulting coupling ‘‘the half cant. To be more accurate, Lukschin [18] has proposed to
flux coupling.’’ predict f2 on G1 by the modified Chapman–Enskog expan-

sion rMu,T(1 2 «/2c)2. In this way the velocity distribution
4. BOLTZMANN NAVIER–STOKES COUPLING: is always a nonegative function; the velocity of particles

IMPLEMENTATION being obtained by an acceptance rejection method.
Observe, also, that apart of any possible problem on the

4.1. The Coupled Problem
validity of the Navier–Stokes model, there is no restriction
on the location of the interface Gint . This is precisely aLet us consider in this section a more general geometry

of an external flow around a flying vehicle (Fig. 2), closer considerable advantage of the half fluxes coupling, com-
pared with coupling by friction. Moreover, the Navier–to the geometry used in the computational test cases.
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Stokes solver is not concerned anymore about the bound- 4.4. Navier–Stokes Solver
ary conditions on the body since they are treated by the

The Navier–Stokes code used in our simulations is based
Boltzmann solver.

on a least squares Petrov–Galerkin finite element method.
This code was developed at Dassault Aviation Company.4.2. Compatibility between the Boltzmann and
Introducing the entropic change of variables [21],Navier–Stokes Models

The compatibility is achieved through a proper choice
of the viscosity model. At the microscopic level the choice
of the intermolecular potential determines the macroscopic

V 5
­

­U
H 5

1
reint 1

2retot 1 reint(c 1 1 2 s)

ru1

ru2

2r

2,law of viscosity. This dependence appears in the study of
the transition from Boltzmann to Navier–Stokes. In the
simulations we will consider, for the Boltzmann collision
operator, the ‘‘variable hard sphere’’ model

where H 5 H(U) 5 2r ln (pr2c) is the entropy function,
B 5 C uvr u12a, the Navier–Stokes equations become

where C is a constant which leads to the Sutherland viscos-
Ã0V,t 1 ÃiV,i 2 (K̃ijV, j),i 5 L(V) 5 0. (22)ity law for the Navier–Stokes equations,

The matrices Ã0 , Ãi , K̃ij are symmetric and Ã0 , K̃ij areN 5 KT 1/21a,
respectively strictly positive and semipositive. The discrete
solution of any Galerkin approximation of the systemwhere K is a constant.
(22) automatically satisfies the second law of thermody-

4.3. The Coupling Algorithm namics.
The discretization is achieved by a time discontinuousTo solve the coupled problem we will use the time

Galerkin method, resulting in a complete space time finitemarching algorithm introduced in [5, 4]. The time loop
element method, applied to the symmetric Navier–Stokesreduces to the following sequence of operations:
equations (22); see [25, 21]. A least square operator and

1. Solve a few steps of the local Boltzmann solver a discontinuity capturing operator are added to ensure the
stability of the method, especially next to shock waves or
boundary layers. For this purpose, following Shakib [25],f n 2 f n21

Dt
1 divx(j f n) 5 Q( f n, f n)(x, j) in VB ,

we introduce a partition of the time interval [0, T] 5
<

N
n50 In , where In 5 [tn , tn11], and a partition of the spatialf n(x, j) 5 f tn21

NS (x, j) on GB if j ? n . 0,
domain V in Ne elements Vne

. Then a space time element
f n 5 Maxwellian on the body; is defined by Qn

ne
5 Vne

3 In . With the notations Qn 5
V 3 In and Pn 5 G 3 In , the spaces of trial functions

2. From f n, compute the half fluxes F 2(U n), entering S h
n and weighting functions W h

n are
the internal boundary of the Navier–Stokes region;

3. With these imposed fluxes F 2(U n), using the bound- S h
n 5 hV h/V h [ (C 0(Qn))m, V h

/Qe
n

[ (Pk(Qe
n))m, q(V h)

ary condition (17) on the interface and usual boundary 5 g(t) sur Pnj,
conditions at infinity, integrate the Navier–Stokes equa-

W h
n 5 hW h/W h [ (C 0(Qn))m, W h

/Qe
n

[ (Pk(Qe
n))m, q9(W h)tions a few steps in time on the external domain and go

back to the Boltzmann problem. 5 0 sur Pnj,
Remark 4.1. In the computational tests we stop the

where m is the number of local degrees of freedom, q isalgorithm as soon as the boundary conditions on GB are
the nonlinear boundary condition transformation function,stationary, i.e., when the parameters of the Maxwellian
g is the prescribed boundary condition [25], and Pk is thedistribution are stationary. For example, we can control
set of kth-order polynomials.the density through the residual

The finite element variational formulation of (22) is then
written as follows:oxi[GB

urn11
i 2 rn

i u

oxi[GB
r0

i
, (21)

• Within each Qn , n 5 0, ..., N 2 1, find V h [ S h
n such

that for all W h [ W h
n , the following equation is satis-

fied:where r0 is the initial density.
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E
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(2W h
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i (V h) 1 W h
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1E
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n))) dV

1 O(ne)n
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FIG. 3. Navier–Stokes coupling boundary condition. The half flux1 O(ne)n

e51
E

Qe
n

DC(W h, V h) dQ
F(Bolt)2 is computed by the Boltzmann solver.

5 E
Pn

W h ? (2F c
i (V h) 1 F d

i (V h)) ? ni dP.

The particle approximation is based on the approximation
of the density f by a sum of Dirac massesWe refer to [21, 25] for the details concerning the matrix

t and the operator DC.
The finite elements generally used are piecewise linear

f(t, x, j) Q
1

ny
ON
i51

d(x 2 xi(t))d(j 2 ji(t)), (26)in space and constant or linear in time. Both discretizations
lead to a system of nonlinear algebraic equations at every
time step. A linearization is performed which leads to where N denotes the total number of numerical particles.
nonsymmetric linear systems solved by a linear GMRES For each time step, the transport equation is solved by
iterative method with a symmetric block diagonal precon- advancing the particles in space using the velocity of the
ditioning described in [25, 26]. preceding time step. Then the global domain is subdivided

The coupling compatibility condition on Gint consists in in regular cells Cj and the collision step is solved separately
replacing F(U), in the Galerkin boundary term of (23), by on each cell. The collision probability is calculated with
F 1(U) 1 F 2(U), with F 2(U n) imposed by the Boltz- the VHS model. The collisions with the body are per-
mann solver. formed with specular reflexion or reflexion with accomoda-

tion. For details see the above references, [24], or [5].Remark 4.2. It is obvious that the new boundary condi-
For the coupling strategy we need to compute in thistion (17) could be implemented in a similar way in a finite

algorithm the fluxes F(Bolt)2 ? n crossing the interface Gint ,volumes solver. Numerical results can be found in [5] for
from the Boltzmann to the Navier–Stokes domain. Forthe Boltzmann–Euler coupling, using a finite volumes code
this purpose the interface is subdivided in segments Sj (seeto solve the Euler equations. In this particular case, the
Fig. 3). The flux F(Bolt)2, during the time unit, is thenChapman–Enskog distribution is replaced by the Maxwel-

lian distribution or by some well chosen functions with
compact support.

4.5. Boltzmann Solver F(Bolt)2 ? n 5
1

Dt Dl
E

[t,Dt]
dt E

Seg
dx E

j ? n#0
fB 1

1

j

uju2

2
2 j ? n dj

(27)The algorithm we use is based on the ‘‘finite poinset
method’’ due to Neuzert et al. [23, 15]. It is an extension
of Nanbu’s algorithm [22]; see also [1, 2] for theoretical
investigations. The main idea consists in decoupling the
physical process in a free transport phase and a collision

5
1

Dt Dl F O
hi,ji ? n,0j

G 1
1

ji

ujiu2

2
2,phase. Thus we successively solve the free transport

equation,

­f
­t

1 j ?
­f
­x

5 0, (24)
where lj is the length of the segment Sj .

Remark 4.3. In order to minimize the memory require-
and the homogeneous collision equation, ments, at each call to the Boltzmann solver, we initialize,

in each cell Cj , the distribution of particles by the Maxwelli-
ans Mj whose parameters rj , uj , and Tj are computed in­f

­t
5 Q( f, f ). (25)

the previous call to the Boltzmann solver.
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while the Knudsen number, measuring the rate of rarefac-
tion of the gas at infinity, and the parameter g, connecting
the VHS model of collision to the macroscopic viscosity,
vary:

test 1: g 5 0.75, « 5 1.16E 2 02,

test 2: g 5 0.75, « 5 5.32E 2 03,

test 3: g 5 0.75, « 5 5.32E 2 04,

test 4: g 5 0.5, « 5 5.32E 2 02,

test 5: g 5 0.5, « 5 1.16E 2 02,

FIG. 4. Geometry for the validity test cases. test 6: g 5 0.5, « 5 5.32E 2 03.

Figures 5 to 10 represent the Mach isolines for each of
these tests.5. NUMERICAL RESULTS: LIMIT OF VALIDITY

We can remark first, looking only at the Boltzmann
In this section our goal is to show the limits of validity solutions, that the shock thickness increases as the parame-

of the half fluxes condition and the importance of a proper ter g or the Knudsen number increase. Moreover, the
localisation of the boundary Gint . The geometry of the quality of the coupled solution deteriorates when the shock
present test cases is as in Fig. 4. We introduce in this thickness increases. Tests 1, 2, and 4 show that the coupled
geometry serious difficulties: segment 1 is perpendicular solutions are not satisfactory. For all these tests we notice
to the shock and segment 2 is almost tangent to it. that the angle between the shock, which crosses segment

The following parameters are kept constant in all test 1, and the plate is always preserved, but that the shock
cases, thickness is not preserved at the interface. Owing to the

direction of the flow, this poor interface matching has small
My 5 18.33, effect on the Boltzmann solution. The situation is more
Ty 5 13.6 K, angle of attack 5 0, dramatic at the interface defined by segment 2. Indeed the
uy 5 1503 m/s, plate length 5 1 m, isolines are there completely discontinuous.

Otherwise the coupled solutions are pretty good for theTW 5 290 K,

FIG. 5. Iso-Mach lines, g 5 0.75, Kn 5 1.16E 2 02.
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FIG. 6. Iso-Mach lines, g 5 0.75, Kn 5 5.32E 2 03.

tests 3, 5, and 6: no variation of shock thickness at the be more sensitive to the size of the nonequilibrium surface
than to the nonequilibrium itself. As a consequence it isinterface and good isolines continuity. Therefore, it ap-

pears clearly that the coupled solution is better when the not possible to choose the interface, or equivalently, the
Boltzmann and Navier–Stokes domains, without care. Inshock is thin. Moreover, the interface condition seems to

FIG. 7. Iso-Mach lines, g 5 0.75, Kn 5 5.32E 2 04.
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FIG. 8. Iso-Mach lines, g 5 0.5, Kn 5 5.32E 2 02.

addition, we can see here that the Knudsen number at
infinity is not a good parameter for this choice. It is neces-
sary to perform a preliminary study to determine where VNS 5 1

r

rui

ruiuj 2 sij

2rEui 2 2uksik 1 Si

2,
the flow may be modelled by the Navier–Stokes equations.
This problem is investigated in the following section.

6. GRAD CRITERION. GLOBAL ADAPTATIVE
ALGORITHM

6.1. Derivation of the Grad Criterion

We propose in this section a method to determine the
validity of a numerical Navier–Stokes solution and to ob- F(VNS) 51

ruk

ruiuk 2 sik

ruiujuk 2 (skiuj 1 sjkui 1 sijuk)

1 Ag(dkiSj 1 djkSi 1 dijSk)

(Si 2 2silul 1 2rEui)uk 2 2 RT p dik

2 2uluiskl 2 (7 RT 1 u2)sik

1 JguiSk 1 Sg(Si 1 Sluldki)

2,
tain a correct definition of the Navier–Stokes domain or
equivalently of the interface boundary Gint (5 GB). Our
strategy is based on the analysis of the residual of the Grad
thirteen moment equations.

More precisely, for a given known Navier–Stokes solu-
tion, we compute the moments KG 5 (1, j, j ^ j, uj u2j)
of the Boltzmann equation for the corresponding Grad
Chapman–Enskog distribution (11),

RNS 5 E KG S­fCE

­t
1 j ?

­fCE

­x
2 Q( fCE)D dj
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375mpRT
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2,

5
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­t
1

­F(VNS)
­x

2 J(VNS),

under the notation (given here for the hard sphere colli-
sion model)
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FIG. 9. Iso-Mach lines, g 5 0.5, Kn 5 1.16E 2 02.

where s 2 is the diameter of molecule protection sphere, be close to zero. Therefore, the Navier–Stokes solution
will be valid everywhere the residual is small.m the mass of a molecule, and Si 5 2qi .

If the Navier–Stokes distribution is a good approxima- In practice we compute Rc , where c is a component of
the vector KG , in a weak form by a finite element proce-tion of the Boltzmann solution, the above residual RNS will

FIG. 10. Iso-Mach lines, g 5 0.5, Kn 5 5.32E 2 03.
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dure. More precisely, in the numerical tests of the following
section we compute iRvivj

il2 . We call this method the
Grad criterion.

6.2. The Resulting Adaptative Algorithm

Our global adaptative algorithm now consists of two
steps; an initializing step, developed in this section, and a
coupling step, identical to the coupling algorithm intro-
duced in Section 3.

The initialization algorithm is the following:

1. Compute a Navier–Stokes solution, with slip or no
slip boundary conditions on the body, on the global

FIG. 11. Global domain splitting: Boltzmann and Navier–Stokes do-
domain; mains. In the implementation, the Boltzmann domain is the set of all

rectangular cells on which the Grad residual is large. The Navier–Stokes2. Compute the Grad residual RNS on the global
domain is obtained by a smooth ‘‘conservative’’ interpolation of thedomain;
boundary of the Boltzmann domain, adding a small overlap in order to

3. Determine the region where the Navier–Stokes so- avoid any ‘‘hole’’ in the partition.
lution is valid.
For this purpose, we fix a threshold value of the Grad
residual. Then, on each node of the global Navier–Stokes uy 5 5672 m/s, c 5 5/3,
mesh, if the Grad residual value is smaller than the thresh- ry 5 1 Pr 5 2/3.
old value the Navier–Stokes solution is valid; if not this
point is introduced in the Boltzmann domain. The main The computational domains are obtained by the algorithm
difficulty is precisely the evaluation of this threshold value. of Section 6.2. The Navier–Stokes mesh is made up 1758
There is no automatic method to determine this number; nodes and 3233 triangles (Fig. 12). The Navier–Stokes
its choice is always empiric; algorithm is advanced for each global iteration of 500 ex-

plicit time steps with a CFL number equal to 0.1.4. Determine the internal boundary Gint of the reduced
The first global Boltzmann iteration is initialized by aNavier–Stokes domain;

Maxwellian with parameters given by the initial Navier–5. Remesh the new Navier–Stokes domain, using the
Stokes solution. For a global Boltzmann iteration, theNavier–Stokes solution of step 1.
Boltzmann algorithm is advanced 500 time steps and the

To remesh the new Navier–Stokes domain, we use an macroscopic properties are averaged over the 200 last time
anisotropic mesh generator. The resulting mesh is of Voro-
noi type and equidistributes the mesh nodes according to
a metric associated to the second derivatives of the step 1
Navier–Stokes solution.

Figure 11 gives an example of the resulting geome-
try.

Remark 6.1. It is possible to introduce an adaptative
updating of the domains in the time marching algorithm.
The Navier–Stokes domain could be reevaluated after
each global Navier–Stokes iteration.

7. NUMERICAL RESULTS: ADAPTATIVE COUPLING

7.1. Flow around an Ellipse

We consider in this section a hypersonic flow around an
ellipse with a 308 angle of attack. More precisely we choose
the following parameters:

My 5 20, TW 5 1000 K, FIG. 12. The Navier–Stokes mesh used for computing the coupled so-
lution.Ty 5 167.3 K, Re/m 5 5000,
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FIG. 13. Isolines of the temperature for the coupled solution. The Boltzmann domain is around the body. The smooth interface represents the
internal boundary of the Navier–Stokes region.

FIG. 14. Temperature cross sections of the coupled solution (continuous line) and of the Boltzmann reference solution (dotted line). The section
is shown at the left bottom of the figure.
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FIG. 15. Temperature cross sections.

steps. Concerning the computational time, on a typical This small error is certainly due to the bad position of the
corresponding interface on which we impose our incomingworkstation, a gobal coupled iteration needs 1 h corre-

sponding to 30 mn for each solver. The global residual, Maxwellian distribution for the Boltzmann problem.
computed according to formula (21), is stable after three
global iterations. Figure 13 represents the temperature iso- 7.2. Flow around a Plate
lines. The continuity at the interface is very good. We want

In this section we show that the coupling algorithm leadsto recall here that we do not impose variable continuity
to a gain of CPU time, compared to a standard Boltzmannat the interface but only half fluxes. This property is still
algorithm used in the whole space domain, if the gas isobserved on the other isolines (mach number, density,
‘‘sufficiently dense.’’ The different solutions are computed...). Figures 14 and 15 represent two cross sections of the
on a HP735 station.temperature, superimposed with a Boltzmann reference

The first test case computes an external flow around asolution. We can remark that the superposition is very
plate of length 0.1 m, without an angle of attack. Thegood. Moreover, the coupled solution recovers the right
parameters of the flow aretemperature jump at the body. Finally, Figs. 16 and 17

show respectively the heat flux coefficient Ch and the skin
friction coefficient Cf. The above coefficients are given by

My 5 18.33, TW 5 290 K,the formulas
Ty 5 13.6 K, c 5 5/3,
uy 5 1503.5 m/s, Pr 5 2/3,
ry 5 1, Re/m 5 30211.Cf 5

(s ? n) ? t

0.5 ryu2
y

,

We have computed three global coupled iterations. The
Ch 5

(q ? n)
0.5 ryu3

y
. Navier–Stokes mesh is shown on Fig. 18. The computa-

tional time for one global Boltzmann iteration is 10 mn
for 500 time steps. For one global Navier–Stokes iteration
the time is 8 mn for 700 explicit time steps. Thus the totalFor these last results the superposition of a coupled Boltz-

mann solution and the coupled solution is very good except time of computation is 54 mn for the coupled solution.
The Boltzmann reference solution is obtained after 1500for the heat flux coefficient in a region under the body.
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FIG. 16. Heat flux coefficient Ch of the coupled solution (continuous line) and of the Boltzmann reference solution (dotted line).

time steps. The corresponding time of computation is 1 h Before going to another test case it may be interesting
to analyse some results. Figure 19 shows the isolines of04 mn. Thus, for this test, both computation times are

comparable. It seems that the coupling algorithm has no the density of the coupled solution. The continuity is good.
Figures 20 and 21 are cross sections of the density and theadvantage for this case.

FIG. 17. Skin friction coefficient Cf of the coupled solution (continuous line) and of the Boltzmann reference solution (dotted line).
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Navier–Stokes solution is very bad; the shock is displaced
and we observe a jump of temperature at the plate. Simi-
larly, we observe a jump of the density at the plate. We
see on this example that the Navier–Stokes model with
no slip and imposed temperature on the body is a poor
alternative to compute such flows.

The last test case we have performed is similar to the
previous one except that the Reynolds number per meter
is now equal to 60421. The Boltzmann reference solution
is obtained after 2000 time steps corresponding to 5 h 30
mn of computational time. For the coupled solution we
have used five global iterations. One global Boltzmann
iteration is obtained computing 400 time steps, after 18
mn and the global Navier–Stokes iteration is obtained
computing 700 explicit time steps, after 12 mn. Thus the
global time of computation for the coupled solution is 2

FIG. 18. Navier–Stokes mesh to compute a coupled solution around h. In this case the coupling algorithm leads to a smaller
a plate. computational time.

8. CONCLUSION
temperature. The direction of the cross section is perpen-
dicular to the direction of the plate. We have superimposed We have proposed in this paper a numerical adaptative

coupling strategy to solve hypersonic flows, at high speed,three different solutions; the coupled solution (dotted line),
the Boltzmann reference solution (thin continuous line), around a vehicle. Our strategy includes an automatic defi-

nition of the computational Navier–Stokes and Boltzmannand a Navier–Stokes solution computed in the whole do-
main with no slip condition and imposed temperature on domains. To this end we have introduced the Grad crite-

rion which measures the distance between the Navier–the plate. For both the temperature and the density the
superposition of the Boltzmann reference solution and the Stokes and the Grad thirteen moments solutions. The cou-

pling is achieved by a natural matching of half fluxes atcoupled solution is very good. On the other hand, the

FIG. 19. Isolines of the density.
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FIG. 20. Cross sections of the density (Navier–Stokes, Boltzmann, and coupled).

the interface of the domains. The Boltzmann and the Na- However, our strategy has two weaknesses. First, there is
no systematic strategy to determine the threshold criterionvier–Stokes solver are coupled by a time marching algo-

rithm. The resulting strategy is very flexible; each step is value in the domain construction. Moreover, we cannot
estimate a priori, from a theoretical point of view, thesolved by its own code.

FIG. 21. Cross sections of the temperature (Navier–Stokes, Boltzmann, and coupled).
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number of time steps for each global Boltzmann and Na- 12. F. Gastaldi, A. Quarteroni, and G. Sacchi Landriani, On the coupling
of two-dimensional hyperbolic and elliptic equations: Analytical andvier–Stokes coupling iteration. All these values are deter-
numerical approach, in [8].mined in an empirical way.

13. H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl.Nevertheless, our numerical results are very satisfactory,
Math. 2 (1949).

compared with Boltzmann reference solutions. The isoline
14. R. Gupta, C. Scott, and J. Moss, ‘‘Slip-Boundary Equations for Multi-

continuity is preserved at the interface. Moreover, thanks component Nonequilibrium Airflow,’’ NASA Technical Paper 2452,
to the criterion, we can optimize the Boltzmann computa- November 1985.
tional domain. The global strategy leads to a good gain of 15. R. Illner and H. Neunzert, On simulation methods for the Boltzmann

equation, Transp. Theory Stat. Phys. 16, 2/3, 141 (1987).time. In addition, our method may be extended to 3D
calculations and to more complex gases, involving multi- 16. P. Le Tallec, ‘‘Domain decomposition methods in computational

mechanics,’’ in Computational Mechanics Advances, Vol. 1, No. 2,species, rotational temperature [20], and possibly chemis-
February 1994.try and vibrational temperature. The last case requires us

17. D. Levermore, ‘‘Moment Closure Hierarchies for Kinetic Theories,’’to study the transition from microscopic to macroscopic
Draft 29, 1993.

models in the presence of strong disequilibrium in molecu-
18. A. Lukshin, H. Neunzert, and J. Struckmeier, ‘‘Coupling of Navier–

lar internal vibrational energy. Stokes and Boltzmann Regions,’’ Interim Report for the Hermes Proj-
ect DPH 6174/91, 1992.
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